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Abstract 

Scattering of a quasi-monochromatic electron beam 
emitted by an extended source by a crystal is described 
with the use of the mutual coherency function and 
formalism Bloch waves. An expression correlating the 
mutual intensities on the exit and entrance surfaces of 
the crystal under partially coherent illumination is 
obtained. The case of illumination by an effective 
incoherent source filling the condenser aperture is 
considered. The effect of coherence of an incident 
beam on the intensity distribution in electron-micros- 
copy images has been studied. For a wedge-shaped 
crystal, intensity profiles of a transmitted electron beam 
in images obtained at different values of incident-beam 
divergency and defocusing of the objective lens have 
been calculated. 

1. Introduction 

In a theoretical description of the diffraction of 
electrons with an energy higher than 100keV in a 
crystal, the incident-particle wave function is usually 
presented as a plane wave. This implies that a point 
source of the illumination system irradiates the speci- 
men with a parallel monochromatic beam of non- 
interacting particles. Although such an approximation is 
an idealization of actual illumination, it is successfully 
used in many applications, e.g. for interpretation of 
images with a diffraction contrast. 

However, the incident plane-wave approximation is 
insufficient for simulating high-resolution electron 
microscopy images. Frank (1973), Wade & Frank 
(1977), Fejes (1977), Hawkes (1978), Ishizuka (1980) 
and Humphreys & Spence (1981) have investigated the 
effect of finite sizes of the source and the energy spread 
of incident particles for such images. Charges in the 
microscope transfer function caused by incoherent 
illumination have mainly been analyzed in these 
investigations. For the specimen transmission function, 
the authors have used the approximation of a 'thin' 
object within the limits of which the scattering 
differences in plane waves falling at different angles 
are not taken into account. Differences within the 
framework of the perturbation method were taken into 
account by Coene, Van Dyck & Van Landaut (1986). 
The above approximations for the specimen transmis- 

sion function are valid for crystals some tens of 
nanometers thick, and they cannot be used in the 
general case. To overcome the shortcomings of the 
'thin' object approximation, Rose (1984) proposed 
using the mutual dynamic object spectrum to describe 
electron scattering. Calculations of the spectrum, 
however, were made only for weakly scattering speci- 
mens and for thin phase objects. 

In simulations of convergent-beam electron diffrac- 
tion patterns, it is generally assumed that the specimen 
is illuminated by an effective incoherent source filling 
the condenser aperture (incoherent illumination). In this 
case, it is believed that the plane waves falling on the 
crystal at different angles within the limits of the 
illumination cone are uncorrelated (Spence & Zuo, 
1992). This approximation is also used for taking into 
account the divergency of an incident beam in simulat- 
ing defect images, e.g. similar calculations were carried 
out by Katerbau (1981) to find the diffraction contrast of 
small dislocation loops, and by Bithell, Donovan & 
Stobbs (1989) in calculating the stacking-fault images in 
a weak beam. Chou, Preston & Steeds (1992) used this 
approximation in simulating the dislocation contrast in 
large-angle convergent-beam electron diffraction pat- 
terns. Although the approximation of uncorrelated plane 
waves is widely used, its accuracy depends upon the 
conditions of illumination and the formation of images 
and also upon the crystal defects. 

When the specimen is illuminated by an extended 
source of electrons, the incident beam appears to be a 
mixed ensemble of particles. To describe these 
ensembles, the density matrix is used in quantum 
mechanics (Blum, 1981). Its evolution is determined 
by the Liouville equation, which is derived from the 
Schr6dinger equation. Formalism of the density matrix 
in the theory of scattering of fast particles in a crystal 
has been used in a number of papers. Kagan & 
Kononetz (1970, 1973) described channeling of posi- 
tively charged particles (protons) in a crystal. Rez 
(1978) and Dudarev & Ryazanov (1988) proposed a 
formulation of the dynamic theory of scattering of 
electrons taking into account their inelastic interaction 
with the crystal. Wright & Bird (1992) used the density 
matrix for a qualitative analysis of the correlation 
between the waves appearing due to thermal diffusion 
scattering of a fast electron in a crystal. Nevertheless, it 
is very difficult to determine the density matrix from the 
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Liouville equation in the multibeam case as it requires a 
solution of N 2 equations, where N is the quantity of 
diffracted beams to be taken into consideration. 

Recently, Dudarev, Peng & Whelan (1993) have 
obtained an integral equation for the density matrix by 
using Green's function for the problem of an electron 
scattering in the crystal. Such an approach made it 
possible to take into account the effect of multiple 
inelastic scattering by collective electronic excitation in 
calculating the intensity distribution in the convergent- 
beam electron diffraction patterns. 

In the above studies, formalism of the density matrix 
was used to describe the interaction of an individual 
particle with the crystal. Its wave function on the 
entrance surface of the specimen was presented as an 
incident plane wave. Therefore, the results obtained 
cannot be used directly to analyze scattering of the 
electron beam emitted by an extended source. 

To describe the diffraction of electrons in the crystal 
under partially coherent illumination, it is possible to 
use an approach differing from that of the solution of 
equations for the density matrix (Borgardt, 1993a). As a 
matter of fact, it should describe scattering of each 
electron and subsequently take into account the coherent 
properties of the beam of particles falling on the crystal. 
The advantage of such an approach follows from the 
fact that methods of determination of the electron 
wavefunction in a crystal are well developed. To 
characterize the electron beam, we have used the 
mutual coherence function and the mutual intensity 
function conventionally applied in electron microscopy. 
Similarly to the density matrix, these functions make it 
possible to determine the time-average intensity dis- 
tribution both in an electron-microscopy image and in a 
diffraction pattern. 

The above approach is consistently described in the 
present work. §2 presents a definition of mutual 
coherence and mutual intensity functions for the 
electron beam and their values on the crystal entrance 
surface are calculated. Propagation of mutual intensity 
through a perfect crystal is described in §3. ~4 presents 
an analysis of the effect of the coherence of incident 
electron waves on the thickness oscillations of the 
transmitted-beam intensity that appear after scattering 
by a wedge-shaped crystal. §5 gives the conclusion. 

2. Mutual intensity on crystal entrance surface 

In transmission electron microscopes, the specimens 
investigated are irradiated by a quasi-monochromatic 
beam of fast electrons whose average energy E 0 is a 
hundred or more keV. The differences between the 
energy of separate electrons and E 0 determine the beam 
energy width, which depends upon the design of the 
electron gun and is within the range AE _< 1.5 eV. The 
spread is due to the Maxwell distribution of velocities of 
particles emitted by the source (cathode), the Boersch 

effect (Boersch, 1954) caused by interactions between 
the electrons of the beam and instabilities of a high 
accelerating voltage. 

To describe the electron motion, we bring into 
coincidence the origin of the Cartesian system of 
coordinates with the point of intersection of the 
microscope optical axis with the entrance surface of 
the crystal, while axis z is directed along the normal to 
the surface deep into the crystal. We make the origin of 
coordinates in the reciprocal space coincident with one 
of the points of the reciprocal lattice, while axes 
k x, ky, k z are chosen to be parallel to the corresponding 
axes of the real space (Fig. 1). Let us assume that the ith 
element of the surface of source Ao" i at time t i starts 
emitting an electron whose energy is equal to E i. From 
quantum mechanics, it follows that each emitted particle 
appears owing to disintegration of the system compris- 
ing the source and the electron inside it. Therefore, the 
energy of each emitted particle is determined with an 
accuracy of 3E in the vicinity of the value of E i. The 3E 
value is related to the time of emission of the electron by 
source r e based on the relationship 8 E r  e ,~ h ,  where h is 
Planck's constant (Landau & Lifschitz, 1977). Approx- 
imate calculations show that 8E is small compared to the 
beam energy width d E .  The precise value of 3E is 
insignificant and therefore it is not calculated. 

At low current densities of the beam, the Boersch 
effect can be neglected and, to describe the motion of 
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Fig. 1. Crystal specimen illuminated by a partially coherent beam of 
electrons. S is the electron source, C1, C 2 are condenser lenses, C a a 
condenser aperture, B the plane perpendicular to the optic axis and 
passing through the origin of coordinates. 
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each of the electrons, the single-particle wavefunction 
q/(r, t, i) _-- l//(r, Ao-i, t, t i )  Can be used. It describes the 
wave package that propagates from the electron source 
through the specimen to the microscope screen. The 
square of the function modulus determines the density 
of the probability of a particle emitted by the source 
element AO- i a t  time t~ being at the point r at time t. 

Assuming the incident electron beam to be stationary, 
we introduce the function of mutual coherence, which 
characterizes its correlations in points rx and r2 at the 
moment t + r and t, respectively: 

F ( r l , r  2, r ) =  ( ) - ' ~ - ~ ( r l , t +  r,i)~*(r2, t,i')) , (1) 
i i' 

where ( ) denotes the time average. 
Expression (1) differs from that used to define the 

mutual coherence function in optics (Born & Wolf, 
1968). Although the optical definition of the mutual 
coherence is extensively used in electron microscopy 
[see e.g. Hawkes (1978) for a review], it is not quite 
correct since electron waves, unlike electromagnetic 
waves, do not allow a determination of the function that 
describes a disturbance at point r varying in time and 
appearing owing to all elements of the source. The 
mutual coherence function introduced by (1) makes it 
possible on the one hand to avoid this difficulty and on 
the other hand, as is seen below, it characterizes the 
electron beam as it does to its optical analog. 

For quasi-monochromatic beams, the time lag r is 
usually much shorter than the time of the electron beam 
coherence rc = h/AE. In these cases, the expression for 
the mutual coherence function can be simplified and 
written as 

F(r l ,  r 2, r) =J(rl,r2)exp(-2rriEor/h), (2) 

where J ( r  1, r E ) - - / - ' ( r l ,  rE, 0) is the mutual intensity 
characterizing the beam spatial coherence. 

Based on the mutual intensity function, the average 
beam intensity at point r is calculated using 

I(r) = J(r,  r), (3) 

which for the pure ensemble is equivalent to the 
intensity definition used in electron microscopy. 

Let us calculate the mutual intensity of points r¢l and 
r~2 on the entrance surface of the crystal. Having used 
the wave functions of the stationary states, we obtain for 
~v(r ,  t, i) in a vacuum 

~Pv(r, t , /)  = f~vs(r,E,i)exp(-2rciEt/h)dE, (4) 

where the function ~vs(r, E, i) is the product of the 
eigenfunction of the energy operator and the amplitude 
of the state corresponding to the energy E. It is not equal 
to zero if E differs from Ei by the order of BE. The fact 
that no limits are seen for the integral here and in what 
follows means that the range of possible values of the 
integration variable is unlimited. 

We introduce the impulse-response function (Green's 
function) K(r C, r s, E) of the microscope illumination 
system, which is equal to the stationary-state amplitude 
of the electron wavefunction with energy E at point r c 
when its wave function at point r s of the source has unit 
amplitude. Then, using (4), we have 

q/v(rc, t, i) = f f K(rc, rs, E)q/vs(r~, E, i ) 

x exp(-27riEt/h) do" dE, (5) 

where do- is the surface element. 
Substituting (5) into (1) and integrating first with 

respect to time and then with respect to energy, we 
obtain for the mutual intensity on the entrance surface of 
the crystal 

J~(rcl,rc2) = rlirnoo(1/T)~-~)-~ f f f hK(r~,rsl, E) 
i i '  zacr i A~r i, 

× ~Pvs(r,1, E, 0K*(rc2, ra ,  E) 

x ~s(rs2 ,  E, i') do" 1 do- 2 dE. (6) 

Further on we assume that the source of electrons is 
incoherent. This assumption is valid in most cases and it 
implies that processes of emitting electrons are 
independent of one another. Therefore, in (6), only 
those terms for which i - - i '  are non-zero. Formally, 
this conclusion can be obtained if in calculation of (6) 
we take into account that functions ~vs(rs, E,i) 
comprise a quickly oscillating multiplier 
exp(2rciEti/h ), whose appearance is determined by the 
diversity in time of the emission of particles by the 
cathode. Owing to this multiplier, the effect of terms 
with i 5~ i' becomes negligible after integration with 
respect to the energy. 

For an incoherent source, the location of the Ao- i 
regions on its surface is random. Hence, in (6), the 
phase factors of the product of the wave functions, 
which are not zero at r~l # rs2, are independent of each 
other for different terms. Therefore, for the particle 
ensemble, the contribution into the integral value is 
made by points r~2 located within the coherence region 
in the vicinity of rsl. Since the region is many times 
smaller than the size of the incoherent source, one can 
approximately assume 

q/vs(r~l, E, i)~vs(r~2, E, i) ~-- /~(r~l - r~2), (7) 

where 3(r) is Dirac's delta-function. 
Taking into account the above remarks, we can write 

(6) as 

J c ( r c l ,  rc2) = S s f f  K(rcx, r~, E) 
as 

× K*(rc2, r,, e)Ur,,  E) do- dE, (8) 

where l'(rs, E) is the average intensity for electrons with 
energy E, o-~ is the surface of the source and S s is a 
constant having dimensions of area. 
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The constant S, ensures the equahty of (6) and (8) 
when (7) is used. It determines the intensity level and 
does not influence the spatial structure of J¢(rcl, re2 ). 
Since for a quasi-monochromatic beam the dependence 
of the product of the response functions on the energy 
within the beam energy width E, as a rule, can be 
neglected, we obtain 

Jc(r~l, rc2) = S s f K(rcl, r~, Eo)K*(rc2, r~, Eo)Is(r~) dcr, 
as 

(9) 

where l~(r~)= f l'(rs, E ) d E .  
Expressions (8) and (9) together with (2) allow one to 

characterize the coherent properties of the electron 
beam falling on the specimen, based on Green's 
function of the optic system and a general idea of the 
source of particles. They are similar to the correspond- 
ing formulae used in optics (Born & Wolf, 1968). It also 
follows from the above analysis and the laws of 
propagation of mutual intensity in a vacuum that their 
passage through lenses is the same for both electro- 
magnetic and electron waves. If (8) and (9) are 
normahzed, the functions in the left-hand parts are 
equivalent to a time-averaged density matrix of an 
incident beam of electrons in x presentation. 

When determining the mutual intensity on the 
entrance surface of the specimen, in many cases one 
can assume that the cathode intermediate image located 
before the condenser aperture (between lenses C 1 and 
C2 in Fig. 1) is an effective incoherent electron source. 
The applicability of such an approximation can be 
estimated on the basis of the parameters of the optic 
system of the microscope. In this case, the response 
function K(r c, r s, E0) is determined conventionally by 
describing the propagation of the electron wave from 
the cathode to the lens, its passage through the lens and 
condenser aperture, and its further propagation to the 
specimen. The corresponding formulae are given, for 
example, by Cowley (1975). Another possibility of 
determining Jc(r~l, rc2) is a direct description of the 
propagation of mutual intensity from the source to the 
specimen. Such an approach is well known in optics 
(Goodman, 1985). 

Calculation of mutual intensity is simplified in the 
case of incoherent critical illumination. We assume that 
the microscope illumination system with the condenser 
aperture at the end focuses the source image on the 
plane B, which is perpendicular to the optical axis and 
passes through the origin (Fig. 1). If the source image 
on plane B is a homogeneously illuminated circle with 
radius d e, the coherence length in the condenser 
aperture plane is determined according to Spence 
(1988) by the formula 

lsa ~- ,~oZa/2rcde, 

where 2 o = 2(E0) is the electron wavelength calculated 
with the relativistic corrections taken into account, and 

Za is the distance between the condenser aperture and 
plane B. 

In the cases when the length ls~ is much smaller than 
the aperture size, one can assume that it is an effective 
incoherent source of electrons, whose intensity has the 
form 

laOta) = lOaSa(lZa) , (10) 

where Ix a is a vector in the aperture plane, I0~ is 
constant, and Sa(l~a) is the form function determined by 
the expression 

1 for lza < d a 
Sa(tX~) = 0 for [~a > da, 

where d a is the radius of the aperture. 
The function K(r, r a, E0) when incoherent illumina- 

tion is used is determined by the formula 

K(r, r~, E0) = exp(2rrilr - ral/2o)/(i2olr - ral). (11) 

The mutual intensity JB0tm, Ire2 ) on the plane B can 
be presented as 

JBOIBI, ~tB2 ) ~- IBJt(II, B1, ~B2)SB(IAB1)SB(IZB2), ( 1 2 )  

where Ix m is a vector in the B plane, se(/xB) is the form 
function of the illuminated region equal to unity at 
/z 8 < d B and to zero a t / z  B >dB, and IB is a constant 
determined from the equahty of the electron flow 
through the condenser aperture and plane B. 

Function J '0 t  m, las2) is determined on the basis of the 
van Cittert-Zernike theorem and given by the formula 

J' (ltm , Ste2) = [exp(i:rcp) /zcd 2] f Sa(lZa) 

X exp[--(2zri/AoZa)(It m -- ~t~)" Pa] dlta, 

(13) 

where tp - -  ( / z 2 1  - [Z2B2)/~OZa • 
This expression is directly obtained as a result of 

substituting (10) and (11) into (9), use of the 
approximation of the Fresnel diffraction, and introduc- 
tion of the normalization factor. After integration, we 
get 

J'(lttm, ire2 ) = [2JI(X)/X] exp(imp), (14) 

where X = 2zr0al~tB1 - ~tB21/20, Oa ~ da/za is a semi- 
angle of the incident-beam divergency and J1 (X) is the 
first-order Bessel function. 

Function J '0 t  m, ~tB2) is equal to unity at It m = lae2 
and rapidly decreases to a small value at 
I l tm-tte2l  > ls, where ls = 2o/2zCOa is a coherency 
length in plane B. 

Expressions (12) and (14) determine the mutual 
intensity in the plane B when no lenses are used 
between the condenser aperture and the specimen. The 
illumination system of modern microscopes has addi- 
tional lenses that make it possible to considerably 
decrease the size of the illuminated area. However, the 
size of the exit pupil of such systems is still determined 
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by the diameter of the condenser aperture as before. 
Then the mutual intensity function of the spot focused 
on the specimen differs from the mutual intensity in an 
intermediate image of the source placed behind the 
aperture only in that its arguments have a scale factor. 
The magnitude of this factor depends upon the 
magnification coefficient of the lenses placed between 
the aperture and the specimen. 

On the basis of (9) and (11), we obtain an expression 
correlating the mutual intensity on the entrance surface 
of the specimen and that on plane B in the case of slight 
deviations from the normal incidence of the electron 
beam. The expression remains valid for any type of 
illumination and has the form 

Jc(rcl,rc2) = J0(rca, rc2)exp[2zriko. (r~x - r~2)], (15) 

where J0(rc1, rc2) -~ JB(lt81, lain), Itei is the projection of 
vector r~ on plane B, and k o is the vector parallel to the 
optical axis of the microscope whose modulus is 
k 0 =  1/2o. 

3. Mutual intensity at exit from crystal 

3.1. General case 

To describe the propagation of mutual intensity 
through the crystal, first we find the relationship 
between the wavefunctions of a separate electron on 
its entrance and exit surfaces. For simplicity, we 
assume the zero Lane zone for an incident beam of 
electrons to be parallel to the entrance surface of the 
crystal and coincident with plane kxOky. Since the Bloch- 
wave method will be used for the description of electron 
scattering in a crystal, it is reasonable to present 
tPv(r, t, i) in a vacuum near the crystal a s  a super- 
position of de Broglie waves: 

q/v(r, t, i) = ffft(k,E, i)exp[2rri(k, r - Et /h)]dkdE,  
(16) 

where .4(k, E , / )  is the wave amplitude and the modulus 
of wave vector k is k(E) = 1/2(E). 

For each value of energy E, the longitudinal k z 
component of the wave vector can be expressed in terms 
of its transverse components. Thus, we have 

~'l(k, E, i) = ft(p, E, i)8[kz - kz(p, E)], (17) 

where kz( P, E) = [k2(E) -p211/2, and p is the projection 
of vector k onto plane kxOky. 

We write the electron wavefunction in the crystal as 

~(r ,  t, i) -- f ~ s ( r , E , i ) e x p ( - 2 r c i E t / h ) d E .  (18) 

Functions ~s(r ,E ,  i) describing the stationary states 
with energy E can be found from the Schr6dinger 
equation where relativistic corrections have been 
introduced. For the incident electron wave (16), 
kes(r, E, i) can be presented as a superposition of the 
Bloch-wave packages (Borgardt, 1993b) 

grs(r ,E , i )= ~ f ~(J)(p,E,i)bU)(p,r,E)dp, (19) 
J 

where 

b (j)(p, r, E) ---- b C/)(l~ ), r, E) 

= exp(2Jril~ ~). r) ~ Cg0)(p, E)exp(27rig. r), 
g 

bO)(p, r, E) is the jth Bloch wave excited in a crystal 
by a plane incident wave with energy E and a trans- 
verse component of wave vector p, q/J)(p, E, i) is the 
excitation amplitude of this wave, ~ )  is the vector with 
components [px,py, kOoz)(p,E)] and g is a reciprocal- 
lattice vector. 

Periodicity of the Bloch-wave functions on reciprocal 
space makes it possible to select transverse components 
of all physically distinguished Bloch waves within the 
region f20, which is the cross section of the Wigner- 
Seitz cell of the reciprocal lattice on the plane kxOky. 
This region is a two-dimensional Brillouin zone whose 
center it is expedient to bring into coincidence with 
point (Pox = kox, Poy = koy). Variations of the wavefunc- 
tion produced by inelastic scattering can be taken into 
account by adding small imaginary parts to the k z 
components of wave vectors k~ ) (Hirsch, Howie, 
Nicholson, Pashley & Whelan, 1965). 

For fast electrons incident on the crystal in the 
directions close to the normal to the surface, the 
boundary conditions are reduced to the equality of 
wavefunctions on plane z -  zc = 0. Using (16) and 
(17), we present ~v(rc, t, i) in the form 

~v(rc, t, i) ~ ~ ' = f f a ( p  + gp, E, i) 
g f20 

x exp{2zri[(p' + gp). Pc - Et/h]} dp' dE, 

where gp is the projection of vector g on the plane kxOky 
and Pc is a vector in the plane x0y with components 
P~ = Xc, P~y - Yc. 

From the usual calculations (see e.g. Jones, Rackham 
& Steeds, 1977) for amplitudes ~J) ,  we obtain 

¢,U)(p', E, i) = ~ ~(p' + gp, E, i)C~ )* (p', E)(1 + gz/K), 
g 

(20) 

where p' ~ I20, K(E) - [k2(E) + U0] 1/2 and U o is the 
normalized mean crystal potential. 

Since the magnitude of 3E is small, in the calculation 
of ~P(r, t, i) we can assume that 

C~)(p, E) ~_ C~)(P, Ei), (21) 

k00~)(p,E) "" k~)(P, Ei) + ( E -  Ei)/[hv~J)(P, Ei)], (22) 

where vz 0) = (1/h)OE/ORe(k~ )) is the z component of the 
electron velocity for the jth branch while variations of 

(J) the imaginary part k~ are considered negligible. 
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Then, substituting (19) and (20) into (18) and taking 
into account (21) and (22), for the electron wavefunc- 
tion we obtain 

~P(r, t, i) = ~ ~ f/~P[r c, t - z/vOz3(p, El), i] 
J g ~2o 

× C(~)*(P, Ei)[1 q- gz/K(Ei)]bO3(p,r, Ei) 

x exp{-2zri[Eit/hvOz3(p, Ei)]} 

x exp[-2zri(p + gp). Pc] dPc dp. (23) 

Using (23), we find mutual intensity at points tea and 
re2 on the entrance surface of the crystal. While doing 
this, we shall assume that (21) is valid at E = E 0 for all 
electrons of the beam and take into account that in the 
cases of interest the following relationship is satisfied: 

[[Zel/VOz3(pl, Ei) ] -- [Ze2/V~l)(p2, Ei ) ] [  

~-- IZel -- Ze21/[Vz(Po, E0)] << ~:c, 

where Vz(Po, Eo) is the z component of the electron 
velocity in a vacuum. 

Substituting (23) into (1) and taking (2) into account, 
we obtain an expression correlating the mutual intensity 
on the entrance and exit surfaces of the crystal under 
partially coherent illumination 

Je(rea,re2) -- E E E E f f f  f Jc(rca,rc2)C~3*(Pa) 
j 1 gl g2 00120 

× cs( °(p2)(l + g,z/hO(1 + g2 /h3 

x bfJ)(pl, rel)b(0*(p2, re2 ) 

x exp[-2zri(p a-q-gap). Pcl] 

× exp[2:ri(P2 +g2p) " Pc2] dpcl dpc2 dpa dP2, 

(24) 

where functions depending on energy are calculated at 
E = E o. 

Expressions (23) and (24) determine the electron 
wave functions and mutual intensity for incident beams 
of an arbitrary divergence. Its constituent Bloch 
functions can be determined analytically in a two- 
beam approximation and for certain symmetrical 
orientations (Hirsch et al . ,  1965). In the general case, 
they are calculated with the help of numerical methods. 
One of the programs for such calculations has been 
suggested by Zuo, Gjonnes & Spence (1989). In the 
following sections, for simplification of formulae we 
restrict ourselves to considering the scattering of 
electron waves with a divergency at which there is no 
overlapping between the intensity discs in a diffraction 
pattern. In this case, in expressions (23) and (24) the 
components with ga = g 2 -  0 are non-zero and de- 
noting the integration region S20 with respect to Pa and 
P2 can be omitted since the expressions under the 
integral sign outside this region are equal to zero. 

3.2. Scat ter ing o f  beams  with a smal l  d ivergency  

The influence of the illumination coherence upon the 
intensity distribution on the exit surface is easily 
understood if we analyze the scattering of beams with 
a small divergency in a crystal. In this case, wave 
vectors of de Broglie waves make a small angle with the 
optic axis of the microscope. Hence, on the branches of 
dispersion surfaces, points in the vicinity of P0 are 
excited. Therefore, in the calculation of (24) we can 
assume that 

(25) 

If the crystal is not excessively thick, then in the 
expansion k z of the component of the wave vectors into 
the Taylor series in the vicinity of Po we can retain the 
terms up to the linear one with respect to (p - P0), i.e. 

koOz~(P) "" koOz~(Po) + aO)" (P - Po), (26) 

where a (j3 = ORe k~)/Op, and variations of imaginary 
parts k~ 3 are not taken into account. 

Using (3), (15) and (24) and taking into account (25) 
and (26), for the intensity on the crystal exit surface we 
have 

/(re) = ~ ~ ~ ~ J0[(Pe + Ape U), Zc), (Pe + AP~ 0, Zc)] 
j l gl g2 

Cu)* C (/) C •) C ( 0, X 0 0 gl g2 

x exp[27ri(l~ ) + gl - k~ 0* - g2)" re], (27) 

where Ape U) = a(~)Z e, Pe is the projection of vector re on 
plane x0y, while values Cg 0) and 1~ ) correspond to 

P = P0" 
Unlike the expression for intensity obtained in the 

incident-plane-wave approximation, (27) includes 
function J0, which has its maximum magnitudes when 
its arguments are equal. If the electron waves 
illuminating the crystal excite sections of the dispersion 
surface that are not parallel to one another, the value 
Se U0 - ] A p e  03 -- Ap(e0l is increased at j ¢ l with the 
crystal thickness growing. This implies a relative 
decrease of the contribution of the corresponding term 
in (27). In cases when Se U0 begins to exceed the 
coherence length l s of the incident electron beam, its 
contribution becomes small, and hence the Bloch-wave 
packages of the jth and/th branches lose their ability for 
constructive interference. The manifestation of this 
effect for a crystal with a definite orientation depends 
upon its thickness and the coherence length l s. To 
explain this, it is necessary to take into account that 
the disturbances are transferred by the Bloch-wave 
packages in directions perpendicular to the excited 
sections of the dispersion surfaces (Borgardt, 1993b). 
One can become certain of the validity of this regularity 
if in calculation of (23) one uses relationships (25) and 
(26). Hence, the constructive interference of Bloch 
waves of the jth and lth branches at point r e depends 
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upon correlation of the incident electron waves at points 
rcl and re2 spaced at s~ O. 

If the divergence is not small, approximations (25) 
and (26) become insufficient. In these cases, the 
intensity on the exit surface will not only depend on 
the tilt of the excited sections of the dispersion surface 
but on their curvature and also on variation of 
coefficients Cg U) in the vicinity of point (Pox, P0y). 

3.3. Incoherent illumination 

According to (15) and (24), to determine mutual 
intensity on the exit surface of the crystal it is necessary 
to calculate the magnitude of integrals 

z = f f  JB(ItB1, ltt/i'2) e x p [ - - 2 : r r i ( P l  - -  Po)" Pcl] 

× exp[2rri(P2 - Po)" PoE] dpcl dpc2- (28) 

We introduce a new variable p" = Pc1-  PoE. Then, 
after substituting (12) and (13) into (28) and taking into 
consideration that the angle between the entrance 
surface of the crystal and plane B is small, we use the 
relationships 

ItB1 --  ItB2 '~ Ptc, It21 --  It2B2 "~ 2ptc " Pc2 "q- (Pc)  2, 

P l  " Pcl --  P2 " Pc2 = Pl " P" + (Pl - P 2 ) "  Pc2. 

Since under incoherent illumination the coherence 
length l s is much smaller than the size of the illuminated 
region, we can also assume 

ss(mB1) -- sB(Ip~ + Pczl) -~  SB(Pc2), 

exp[Tri(~)2/2oZa] = exp[i(~)2 /2l fla] ~- 1. 

Taking into account the above remarks, we have 

Z = (IB/rc)(2oZa/da) 2 f Sa(lI t -- (Pl --  Pc)AoZal)sB(lz) 

x exp[--2zri(p 1 - P2)" It] dit. (29) 

The expression obtained is non-zero if the circles 
with centers at the origin of coordinates and at the point 
determined by vector ( P l -  P0)20Za have a common 
region. This is true for vectors pm satisfying the 
condition 

IPl - P01 < da/'~oZa + dB/'~OZa ~" koOa, (30) 

where it is taken into account that the radius of the 
source image is many times smaller than that of the 
aper ture .  

Since for almost all values of vector p~ the range of 
integration in (29) is determined by function sB(/z ), we 
obtain for 2 

2" ~ IB(2oZadB/da)212Jl(27rdB[Pl  --  P 2 l ) / 2 z r d s l p l  - P2I] 

× Sa(IPl - Pol), (31) 

where Sa(P) is the form function in the reciprocal space, 
whose appearance is determined by (30). It is equal to 
unity at p <_ koO a and to zero at other values of p. 

From (31) it follows that 27 becomes small at 
IPl - P21 >~ 1/dB. Under incoherent illumination, the 
radius of the spot is far in excess of the lattice 
parameter. Therefore, in calculation of the mutual 
intensity, wave vector 1~ ) and coefficients Cg U) at point 
Pl can be approximately expressed in terms of their 
values at point P2 using relationships similar to (25) and 
(26). Then, substituting (29) into (24) and taking into 
account (30), after transformation we find 

J e ( r e l ,  re2)  = (IB/Tr)(,~oZa/da) 2 ~ ~ f SB(IPel -1- ~(J)Zel I ) 
j t 

× Sa(Ip - Pol)COo3*(p)C~oO(P)bU)(p, re1) 

× b(O*(p, re2 ) dp. 

Hence, for intensity at points not lying in the vicinity 
of the image edge, we have 

Ie(re) = f Iep(re, P)Sa(IP -- P0[) dp, (32) 

where Iep(r e, p) is the intensity at point r e determined by 
the incident plane wave with the wave vector transverse 
component equal to p. 

Formula (32) is the basis of the frequently used 
approach that the passage of an electron beam through a 
perfect crystal can be described as scattering of 
independent plane waves falling onto it at different 
angles. This approach is valid when the illumination 
system is focused on plane B. If the electron source 
image is located higher or lower than the specimen 
entrance surface, then, according to Pozzi (1987), 
coherence length l s increases and (12) and (13) cannot 
be used for calculations of mutual intensity. 

4. Transmitted-electron-beam intensity for a wedge- 
shaped crystal 

At the end of §3.2, we noted that under partially 
coherent illumination the constructive interference of 
Bloch waves of different branches of the dispersion 
surface can be suppressed. As an illustration of this 
effect, we shall consider a case of the intensity 
distribution in the images with a diffraction contrast of 
a wedge-shaped crystal. The intensity thickness oscilla- 
tions in such images appear as a result of the 
constructive interference of Bloch waves of different 
branches. Therefore, variations in the oscillation 
amplitude give an insight into the effect of the 
illumination coherence on the interference of those 
waves. 

For simplicity, we assume the edge of the wedge to 
be parallel to axis y and then obtain the expression for 
mutual intensity on plane D perpendicular to the 
microscope optical axis (Fig. 2a). In this section, we 
shall consider only diffraction from the zero Laue zone 
(gp = g) and assume that the shape of the crystal 
specimen has no effect on the lattice potential, and make 
use of expression (19) for wavefunctions. In the frame- 
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work of this approach, it is impossible to describe 
Fresnel contrast of the specimen edge; this is, however, 
not essential for the current analysis. 

The wavefunction of each electron after emerging 
from the crystal is the sum of the transmitted and 
diffracted waves and can be written as 

q/r(r,  t, i) = E E f f  h~)(P ' + ~,  E, i) 
j g' 

x exp[2n'i(Kg, • r - Et/h)] dp' dE, (33) 

where Kg, - [p' + g', Kz(p' + g', E)] is the wave vector of 
an electron wave in a vacuum in a stationary state with 
energy E. 

If the reflection of waves when they leave the crystal 
is neglected, the boundary conditions reduce to the 
equality of the wavefunctions on its exit surface 

k 0 

, D 

O" X" 
(a) 

j 

/1'1  " 
kz 

(b) 
Fig. 2. Cross sections of  a wedge-shaped crystal (a) and of  the 

corresponding dispersion surface (b). n c and n,  are normals to the 
entrance and exit surfaces of the crystal. The excited sections on the 
dispersion surface and on the sphere of equal energy in a vacuum 
can be seen in (b). Arrows in (b) show the directions in which 
electron waves transfer disturbances. 

~/T(re, t ,  i) -- ~P(r e, t, i), (34) 

and the components of vector r e are correlated by the 
relationship 

Ze = Xe tan ~o + z0, 

where x e > -Zo cot ~0, ~0 is an angle of the wedge and z0 
is the crystal thickness at point x = 0. 

Having used (18), (19) and (33), we can see that (34) 
is true only for transverse components p', g' and p, g of 
wave vectors in a vacuum, and in the crystal the 
following relationships are valid: 

p t y = p , ,  g ' = g ,  

P'x + Kz(P' + g', E) tan ~o = Px + k0~)(P, E) tan ~ °- 

These equations simply imply that the projections of 
wave vectors onto the crystal exit surface in 
transition of the plane electron wave from the 
crystal to vacuum are invariable (Fig. 2b). Since 
the differences between p~, and Px are small, the 
value of i( z in the vicinity of point (p + g) can be 
presented as the first two terms of the Taylor series. 
Then for p' we obtain 

p' = p + zip@(p, g, E), 

where 

Apx0~(p, g, E) _~ [ko~)(p, E)--Kz( p + g, E)][1 +c~ r tan 9]-1 

x tan ~o, 

ApyU)(p, g, E) = 0 ,  

aT = --(Px + gx)/Kz(P + g, E). 

Taking into account the expressions obtained 
from (34), we can find amplitudes B~). Proceeding as 
shown in §3.1, it is possible to obtain an expression for 
the wave functions of electrons, and on this basis to 
calculate the mutual intensity of an electron beam after 
scattering in the crystal: 

Jr(r~, r2) : E E E E ffffJe(r~,,rc2)COo)*(P,) 
j l gl g2 

CU)~'n aC( I) [,., "~C( t). tn .~ exp{27ri[ko0z~(pl) X g] klJl] 0 klJ2] g2 LV21 

-k(oOz*(p2)]Zo}exp{2:rri[Kz(pl + g] + Zip (j)) 

x (z l  - Zo) - Kzfp2 + g2 + Z i P ( ° ) ( z 2  - Zo)]} 

x exp{2rri[(pl + gl + Zip0~). Pl 

- (P2 + g2 + Zip<0). P2]} 

× exp[-2rri(Pl  " Pc1 - P2" Pc2)] 

x dpc 1 dpc 2 dPl dp2, (35) 

where all the values depending upon the energy are 
calculated at E = E o. 

The expression obtained determines the mutual 
intensity of the electron beam after scattering in a 
wedge-shaped crystal. Using the expression as the base, 
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according to Dinges, Berger & Rose (1995) we can 
calculate mutual intensity on the image plane taking into 
account the transfer function of the microscope. 
However, if we restrict ourselves to consideration of 
beams with a small divergency, calculations of the 
intensity of the transmitted or one of the diffracted 
beams are essentially simplified. In this case, the effect 
of spherical aberration and the finite size of the 
objective aperture can be neglected. As a result, the 
intensity distribution on plane D and that in the image 
differ only in the scale factor. 

To.determine the transmitted-beam intensity [I0(rD)] 
on the plane of the objective-lens focus, it is sufficient to 
group terms with gt = g2 = 0 and assume r 1 = r 2 = r D 
in (35). We shall carry out calculations in a two-beam 
approximation for an Si crystal and electrons with 
100 keV kinematic energy. We assume that Poy = 0 and 
vector g corresponding to the reflection on plane (220) 
is directed along axis x. Values C~ 9 and k00z ) are 

e . .  in determined according to formulae presented k0~z ) ' 'gas  
Hirsch et al. ,(1965). Using the expression for a 
base, value Ctx 0) can be presented as 

ct 0? = - [ ( -1 ) /wtan  OB]/[(1 + W2)1/2], 

where w =-(2p0x + g)~g tan0B, ~g is the extinction 
length and 08 the Bragg angle equal to 0n _~ g/2k  o. 

According to Hirsch et al. (1965), the extinction 
length is ~g = 75.7 nm, while the absorption lengths and 
the mean inner potential according to Radi (1970) are 
~; = 0.6/~g, ~g = 0.025/~g and Vo = 11.85eV, respec- 
tively. 

Under incoherent illumination, mutual intensity on 
the crystal entrance surface is determined using (12), 
(14) and (15). In the calculations, distance Za was taken 
to be equal to 251.4mm, which conforms with 
microscope JEM-100C (Spence, 1988). It implies that 
with the aperture size d a = 200 lam, angle 
On _~4 x 10-4rad, while the coherence length l s _~ 
1.5rim. 

At a small divergency of the incident beam for k0~ ) 
and Cg ) in the vicinity of Po, we can use (25) and (26) 
and present value Ap~ ) as 

Apx0)(P) --~ APx0)(Po) + [OAP~)(Po)]/OPx(P -- P0)x. 

When calculating the differences between the k z 
components of the wave vectors i n a  vacuum in (35), 
one should take into account (31) and the fact that for 
the incident beam Poy - 0 .  Hence, in a wide range of 
defocusing we have 

Kz[pl -a t- z~pOg(,pl) ] --Xz[.p 2 + Ap(0(p2)] 

- + ( p l  - 

- (P2 - Po)x~w(P~r°)O (°, 

where 

Otw, = Otcz/OPx, Pr U) = Po + APC/)(Po), 

0(J)= 1 + OAp~)(po)/Opx. 

Taking into account the above approximations, we 
obtain for intensity 

10(rD) = ~ ~ J0[(Po + AP~ ), Zc), (PD + AP~ 0, Zc)] 
j l 

r'~J)* r'(J) r'(0* r< 0 exp[2zri(koU~) _ k~*)Zo] )< " 0  "-'0 "-'0 "-'0 

x exp{Ezri[Xz(pr 0)) -- rz(p~rO)](ZD -- Z0)} 

X exp[2rri(ApU) -- Ap(0). Po], (36) 

where 

= C)Zo + , vx p ))oU)(zo - Zo) 

+ ( O Ap~) / OPx) Pox, 

A p ~ = O  

and PD is the projection of vector r D on plane x0y. 
In (36), all functions depending on p except tCz(p) and 

c~w,(p ) are calculated at p = Po while the components of 
vector r D are correlated by the relationship 

zo -~ Pm tan ~o D + z0 + ( /cos  ~o D, 

where fPD is the angle between axis x and plane D, and ( 
is the defocusing (Fig. 2a). 

Fig. 3 illustrates the intensity profiles for the 
transmitted beam on the focusing plane D, calculated 
by (36), and in the incident plane-wave approximation. 
In Figs. 3(a)-(d), plane D is directly under the crystal 
exit surface. In plotting the curves, axis O'x', whose 
origin is coincident with the projection of the wedge 
edge on plane D, was used. The intensity of the incident 
beam on the crystal entrance surface was assumed to be 
equal to unity. 

If the specimen is at the Bragg condition, the 
incident-beam divergency has no effect on the intensity 
distribution (Fig. 3a). This is because at w -  0 the 
excited sections on the branches of the dispersion 
surface are parallel to each other [ot~ ) = O~(x 0 -- 0]. 

If the Bragg conditions are not fulfilled, the tilts of the 
excited sections differ. Therefore, as the crystal 
thickness grows, the distance between the entrance 
surface points whose correlation determines the oscilla- 
tion amplitude increases. Since the difference in the tilt 
angles increases with increasing Iwl, the intensity 
oscillations shown in Fig. 3(c) become suppressed at 
smaller thicknesses than those shown in Fig. 3(b). 

As the incident-beam divergence reduces, the 
coherence length increases. Since the constructive 
interference of the Bloch-wave packages depends (j/) 
upon the relationship of values l s and s~ = 
IApo U) -  Ap(0 I, the intensity oscillations shown in Fig. 
3(d) become suppressed at greater thicknesses than 
those shown in Fig. 3(c). 
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Fig. 3(e) shows the intensity profiles for a defocused 
image. From comparison of Fig. 3(c) and Fig. 3(e), it 
follows that at defocusing the amplitude of the intensity 
oscillations reduces for small thicknesses and increases 
in the range of large thicknesses. This effect can be 
explained by the fact that, as defocusing grows, plane D 
conjugated with the microscope screen becomes distant 
from the crystal exit surface. In scattering by a wedge- 
shaped crystal, Bloch waves of different branches excite 
different sections on the constant energy sphere in a 
vacuum while electron waves transfer the disturbances 
perpendicular to those sections (Fig. 2b). Since their 
tilts are not the same, an additional term linearly 
dependent on ~ appears in s~o O. The presence of this 
term is responsible for variations in the intensity 
distribution at defocusing. 

The observed regularities of the effect of the 
illumination coherence on the intensity thickness 
oscillations in bright-field images remain valid also for 

dark-field images. To carry out the necessary calcula- 
tions, it is sufficient to select the incident-beam 
orientation so that the gth diffracted beam should 
propagate along the optical axis. 

It is noteworthy that the contrast variations similar to 
those above can appear in the diffraction images of the 
stalking fault. In this case, Bloch-wave packages with 
various sets of transverse components of the wave 
vectors arise as a result of inter-branch scattering on the 
stalking fault. The contrast changes produced by 
variations of the incident divergency and defocusing 
were experimentally investigated by Borgardt, Eremeev 
& Maksimov (1988). 

5. Conclusions 

To describe scattering of electron quasi-monochromatic 
beams in a crystal under partially coherent illumination, 
the mutual coherency and mutual intensity functions 

0.1 0.2 (a) 

r 

! 

x' (v,m) 

o.'1 o'.2 x' (~n) 
(c) 

0.'1 012 
(e) 

i 

x' (ktm) 

f ~  

r 

| 

Oi 1 012 x' ([am) 
(b) 

0~1 0~2 
(d) 

Fig. 3. Intensity profiles for the transmitted beam at (a) w = 0, (b) 
w = 0.5 and (c),(d),(e) w = - 1 ;  ~0 = 1.1 rad. Solid curves corre- 
spond to the incident partially coherent electron beam, the dashed 
curves denote the incident-plane-wave approximation. The semi- 
angle of  the incident-beam divergency 0 a = 0.4 mrad for (a)-(c), (e) 
and 0a = 0.2 mrad for (d); the objective-lens defocusing ( = 0.3 lam 
for (a)-(d) and ( = 20 lain for (e). 
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were used. Although their definitions for electron waves 
differ from those accepted in optics, the functions allow 
a characterization of the electron beam as its optical 
analog. 

To calculate the mutual intensity on the crystal 
exit surface, scattering of each electron by a 
specimen within the framework of the Bloch-wave 
formalism was described and then the coherent 
properties of an incident beam were taken into 
account. Such an approach made it possible to 
obtain an analytical expression correlating mutual 
intensities on the exit and entrance surfaces of a 
perfect crystal for a beam of arbitrary divergency. 

On the basis of the formulae obtained, it is shown that 
the approach of plane waves filling the illumination 
cone can be used for calculating the electron intensity 
under incoherent illumination. 

For finding the effect of the illumination coher- 
ence on the electron diffraction, the case of a small 
divergent incident beam has been considered. It has 
been found that the constructive interference of 
Bloch waves  of different branches depends upon the 
correlations of the incident beam at different points 
on the crystal entrance surface. The distance 
between these points is proportional to the angle 
between the excited sections of the dispersion 
surface and the thickness of the crystal. If it 
exceeds the coherence length of the incident beam, 
the constructive interference of Bloch waves is 
suppressed. 

To illustrate this effect, the intensity distributions 
of a transmitted beam for a wedge-shaped crystal 
have been calculated. If the incident electrons excite 
non-parallel sections on the dispersion surface, and 
the focusing plane of the objective lens is in the 
vicinity of the crystal exit surface, the intensity 
oscillation amplitude is reduced with the growing 
thickness. At defocusing, the contrast of the 
extinction fringes changes since for a wedge-shaped 
crystal Bloch waves of different branches excite 
different sections on the constant-energy sphere in a 
vacuum. 
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